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Abstract— Multi-swarm systems, characterized by the coor-
dination of multiple individual swarms, are instrumental in
addressing multi-modal problems where multiple local optima
exist. This paper explores the factors influencing the efficiency
of these systems, including the organization of sub-swarms, the
dynamic processes of swarm formation and disbandment post-
task completion, navigation strategies, the underlying commu-
nication network structure, and the communication ranges em-
ployed. We examine multi-swarm systems, particularly for col-
laborative robotic frameworks that tackle intricate challenges to
optimize task-solving capabilities. Leveraging techniques such
as grouping and dispersion, the systems demonstrate enhanced
task completion within diverse environments. This study con-
tributes valuable insights into designing and implementing
multi-swarm systems for improved problem-solving capabilities.

I. INTRODUCTION

Swarm systems, wherein multiple robots collaborate to
accomplish tasks beyond the capacity of individual units,
have garnered significant attention across diverse applica-
tions. In swarm robotics, agents are typically physically
and behaviorally undifferentiated, aligning with ethological
models of self-organizing natural systems. However, this
design choice simplifies the intricate heterogeneity observed
in natural counterparts, presenting an abstraction that aids
modeling.

The extension of swarm robotics into multi-swarm systems
enhances their capabilities by orchestrating multiple swarms
to address various tasks within a shared environment. The
allocation of tasks and collaboration among swarms hinge
upon the complexity of designated tasks, leading to dynamic
variations in swarm size for optimal performance [1]. In-
teraction between swarms within the same environment ne-
cessitates meticulous consideration during system design to
ensure effective collaboration and resolve potential conflicts.

Swarm robots excel in executing a diverse range of tasks,
encompassing odor source localization, deployment, task
allocation, object assembly, self-assembly, coordinated mo-
tion, group size estimation, distributed rendezvous, collective
decision-making, and human-swarm interaction. Collabora-
tive manipulation, involving the joint effort of swarm robots
to manipulate objects in the environment, is particularly
valuable for tasks challenging for individual robots, such
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Fig. 1: Multiple swarms of birds in flight - demonstrating
real-time dynamic interactions between swarms and collec-
tive coordinated movements of birds

as object transportation and stick pulling. Evaluating the
effectiveness of completed tasks is crucial, with metrics like
completion time and formations providing valuable insights
[2].

Deployment, a critical aspect of swarm robotics, involves
robots autonomously positioning themselves without central
coordination. Direct communication or stigmergy, where
robots respond to the actions of their predecessors, facilitates
data sharing among robots. Task allocation strategies, includ-
ing threshold-based methods and probabilistic approaches,
contribute to successfully executing collaborative tasks such
as foraging and collecting scattered items. The arrangement
of swarms within multi-swarm systems is a pivotal deter-
minant of their performance, with various configurations
tailored to specific problem requirements. Particle Swarm
Optimization (PSO) is one such method that mimics the col-
lective behavior of birds searching for food, guiding robots to
optimal solutions. In dynamic scenarios, the adaptability of
PSO proves essential. Charged Particle Swarm Optimization
(CPSO) introduces chaos in the orbits of repelling particles,
maintaining diversity in swarms, while Quantum Swarm
Optimization (QSO) employs a quantum model for enhanced
exploration.

However, challenges arise in Multi-CPSOs due to the
delicate balance between attractive forces in the nucleus
and repulsive forces of orbiting robots, potentially resulting
in swarms reaching equilibrium near suboptimal solutions.
Proposed solutions include introducing competition between



swarms, ensuring that the swarm with a higher score remains
at a given optimum [2].

These considerations underscore the importance of indi-
vidual swarm characteristics in achieving solutions, as exem-
plified by the challenges faced by multi-CPSOs in dynamic
environments. This paper delves into the intricate interplay of
factors influencing the efficiency and effectiveness of multi-
swarm systems, shedding light on their application in solving
complex tasks.

II. COMMUNICATION IN HETEROGENEOUS
SWARMS

Interoperability is crucial in multi-agent systems, espe-
cially considering their autonomous operation and interac-
tion with other agents or non-agent entities for coordinated
actions. This characteristic underscores the need for effective
communication among individual systems. The swarm is ex-
pected to autonomously execute tasks while simultaneously
communicating with other systems to optimize actions for
the overall benefit of the entire swarm. Integration implies
that each system can communicate and interact (control) with
the System of Systems (SoS) regardless of hardware and
software characteristics. Ensuring compatibility is essential
for seamless communication [5].

A. Spatially Targeted Communication
In cooperation between two homogeneous swarms, com-

munication is typically specific to the system and its ap-
plications. To our knowledge, the most explored hetero-
geneous swarm system involves cooperation between two
different swarms: foot-bots and eye-bots. Foot-bots are small
autonomous robots specialized in moving on both even and
uneven terrains, capable of self-assembling and transporting
objects or other robots. Eye-bots are autonomous flying
robots that can attach to an indoor ceiling, analyzing the
environment from a privileged position to collectively gather
information inaccessible to foot-bots [3].

Communication between eye-bots and foot-bots is
achieved through spatially targeted control signals and con-
trol policy statuses of the particular bots. The status of a foot-
bot is communicated through LEDs fixed on their bodies to
the eye-bot. Positioned on the ceiling, eye-bots provide di-
rectional instructions to the foot-bots on the ground, guiding
them towards the source or the target location [4].

The introduction of a third swarm system, hand-bots, to
this existing setup has also been explored. Hand-bots are
autonomous robots capable of climbing vertical surfaces and
manipulating small objects. These systems operate without
centralized control, relying on continued local and non-local
interactions to produce collective self-organized behavior.
The dynamic self-reconfigurability of these robots allows
them to form ad hoc coalitions or integrated structures locally
on a need basis, enhancing their capacity to perform more
complex tasks [6].

B. Strategies Implemented on the Network Layers
To achieve some of the main characteristics of a system

of systems approach, communications play a vital role. Task

management is proposed by dividing the swarm network. A
control plane interface connects An evolving base station to
the nodes. Two-stage control data plane splitting (TSCDP)
is introduced to enhance network usage by optimizing
unwanted access. This approach improves task allocation
and resource management in heterogeneous swarms and
increases the data retention rate during transmission [5].

Considering robotic swarm systems in heterogeneous en-
vironments (land, water, and air) as a larger System of
Systems [6], three channels of communication in complex
heterogeneous swarms are discussed:

1) Over-the-Air and Underwater Communication: Com-
munication can be implemented in various ways, including
radio frequency modulation, acoustic propagation, and fiber-
optic communication. Among these, radio modems, specifi-
cally Zigbee modules, are chosen for over-the-air communi-
cation due to their low-power wireless communication tech-
nology and an international protocol for wireless networking.
Zigbee modules reduce data size, allowing for lower-cost
network construction with a simplified protocol and limited
functionality. RF signals are deemed suitable for underwater
communication, and a wideband communication solution
has been chosen to address potential degradation in salty
water. The communication process involves nodes sending
information to the Ground node to establish communication,
including the robot’s position and a unique identification
number for each node [7], [8].

2) Underwater to Surface Communication: A surface
vessel acts as a gateway between swarms in both underwater
and on-land environments. Directional antennas, optic fibers,
or wire-line mechanisms establish communication between
the surface vessel and the underwater swarm. Intermediate
relay swarm robots can facilitate communication between
the surface vehicle’s antenna and the underwater swarm. The
chosen hardware includes XBee Pro modules for land-based
vehicle communication and OFDM for underwater vehicle
communication [9].

3) Air to Ground Communication: RF technology is the
most suitable form of communication, considering various
parameters. ZigBee-based radio modems provide the PHY
and MAC layers for a communication protocol, offering the
freedom to use a custom protocol for the swarm of robots.
Serial Line Internet Protocol (SLIP) is used to benefit from
low overhead requirements and create a customized protocol
tailored to the needs of the swarm. A cyclic redundancy
check (CRC) is introduced to reduce errors in SLIP, and
when bandwidth and processing resources permit, extensible
markup language may be employed in messages to reduce
errors. The ground-based vehicles relay messages to under-
water vehicles, forming a System of Systems Communication
for heterogeneous independently operable systems [10].

C. Hybrid Particle Swarm Optimization

Understanding Heterogeneous Particle Swarm Optimiza-
tion (PSO) algorithms requires an introduction to Homoge-
neous PSO algorithms.



1) Homogeneous PSO algorithms: In commonly studied
Homogeneous PSO algorithms, certain variants are briefly
reviewed here:

1) Position and Velocity Updates:

xi j(t +1) = xi j(t)+ vi j(t +1) (1)

vi j(t) = wvi j(t)+ c1r1 j(t)(yi j(t)− xa(t))+

c2r2 j(t)(ŷ j(t)− xi j(t))
(2)

Here xi j(t), yi j(t) and yi(t) refer to particle i’s po-
sition, personal best position, and global best posi-
tion in dimension j at time step t respectively. The
constants c1 and c2 is the acceleration coefficients,
and r1 j(t),r2 j(t) ≈ U(0,1). In the above, w is the
inertia weight. Equation 2 results in particles with a
balance of exploration and exploitation depending on
the values of the parameters, w, c1, and c2. Suppose
parameters are changed such that c1 is initially larger
than c2 and is decreased linearly over time, while c2
is linearly increased. In that case, the model will focus
on exploration during the initial search steps and move
towards more exploitation as the number of iterations
increases. [12].

2) Cognitive-Only Model:

vi j(t +1) = wvi j(t)+ c1r1 j(t)(yi j(t)− xi j(t)) (3)

The cognitive-only velocity update removes the social
component, resulting in a model that encourages ex-
ploration as each node becomes a hill-climber[13].

3) Social-Only Model:

vi j = wvi j(t)+ c2r2 j(t)(ŷi(t)− xi j(t)) (4)

The social-only velocity update removes the cognitive
component, resulting in a model where each node
is a stochastic hill-climber [13]. The position update
equation is the same as Equation 1. In this model, each
node is a stochastic hill-climber node.

Communication between robotic nodes depends on the
roles assigned to them. New variants of PSO have been
designed to work well in dynamic environments, involv-
ing splitting the population into interacting swarms. These
swarms communicate locally through an exclusion param-
eter and globally through a new anti-convergence operator.
Additionally, each swarm maintains diversity either through
charged or quantum particles.

2) Heterogeneous PSO algorithms: Examples of existing
approaches of Heterogeneous PSO algorithms where nodes
implement different behaviors include:

1) Static HPSO (sHPSO): Behaviors are randomly
assigned during initialization and remain constant
throughout the search process.

2) Dynamic HPSO (dHPSO): Particle behaviors can
change randomly during the search process. When a
particle fails to improve its personal best position over
a window of recent iterations, it randomly selects new
behaviors from the behavior pool.

3) Division of labor PSO: Nodes can switch to a local
search near the end of the search process. [14]

4) Charged PSO: Some nodes have a charge, while others
do not. Charged nodes add repelling force to the
velocity update rule.[15]

5) Life-cycle PSO: Nodes follow a life-cycle, transition-
ing from a PSO particle to a genetic algorithm individ-
ual to a stochastic hill-climber. Individuals may follow
different behaviors at any time.[16]

6) Predator-prey PSO: The swarm contains predator and
prey nodes. Predator nodes are attracted only to the
global best position, exploiting, while prey nodes repel
from the position of predator nodes.[17]

7) Niche PSO: Developed to locate multiple solutions,
a main swarm of nodes is used, where nodes im-
plement a cognitive-only velocity update. Sub-swarms
are formed around optima, with nodes following the
guaranteed convergence PSO [18].

8) Guaranteed convergence PSO: The global best particle
follows a different and comparatively higher exploita-
tive search behavior than all the other nodes. [19]

III. GROUPING AND DEPLOYMENT OF
HETEROGENEOUS SYSTEMS

In a self-deployment scenario, robots must deploy them-
selves in an environment without central coordination. This
task has many potential practical applications, from mapping
unknown environments to autonomous surveillance systems.
The swarms are deployed and grouped initially following one
of the below methods. The best individual in each inactive
swarm will be a good starting point for searching for new
(local) optima. Therefore, the best individual of each inactive
swarm serves as the seed of a new active swarm. After an
active swarm has become inactive or obsolete, the respective
members will either remain inactive or join another active
swarm for optimal use of resources.

A. Direct Communication

Direct robot-to-robot communication is the most used
mechanism for cooperation in self-deployment tasks. Com-
munication can occur using explicit messages or implic-
itly by sensing other robots’ nearby presence and relative
position. Information acquired from nearby robots can be
used to implement simple mechanisms of robot avoidance
or, more often, to regulate the position and velocity of a
robot according to a desired behavior. In the latter case,
robot movement can be determined following principles of
artificial physics to preserve connectivity between swarm
members or obtaining formations described by a specific
geometric relationship between neighboring robots.

B. Stigmergy

Stigmergic communication gives robots moving in an area
of the environment an indication of previous actions done by
other robots in the same area. In various scenarios (e.g., in the
foraging task), it is used with a positive feedback mechanism,
i.e., an action done by a robot increases the probability



that other robots repeat the same action. Conversely, for
the deployment task, a negative feedback mechanism can be
put in place, preventing different robots from repeating the
same action and specifically preventing the same areas of the
environment from being explored multiple times or, in tasks
where the environment must be covered repeatedly, maxi-
mizing the time between two successive visits to the same
place. Stigmergic communication has been implemented in
past works using simulated pheromone traces: the presence
and intensity of a pheromone at a given location is used
to indicate that the location has been visited before. In
some studies, pheromone is assumed to evaporate over time,
analogously to what happens in nature with chemical traces,
and this property is used to optimize repeated coverage
of the same area or to dynamically assign non-overlapping
patrolling areas to different robots.

C. Dispersion Algorithm

In the dispersion task, swarm members must position
themselves away from one another to maximize the area
covered globally by the swarm and/or minimize the time
needed to cover the area. For example, a robot dispersion
technique can be applied in scenarios where robots must find
particular locations in the environment or objects located in
unknown places (as in the case of foraging robots). Thus, the
dispersion task can be used as a sub-task of more complex
activities. In some cases, an additional constraint is given
by the requirement that the connectivity of the swarm must
be preserved, i.e., each robot must be able to sense or
communicate with at least another robot so that there are no
isolated groups. It is intuitively understood that programming
robots so that they avoid each other while moving in the
environment increases the capability of the swarm to cover
a large area, compared to a simple random walk technique.
Kuyucu et al. [20] used a genetic algorithm to evolve a
set of parameters (e.g., pheromone production rate) that
influence the swarm performance in the deployment task.
According to simulation results, parameter values obtained
with the evolutionary method lead to better performance than
manually tuned values. Stigmergic communication allows a
group of robots to coordinate to dynamically partition an
area into contiguous territories, with each territory patrolled
by one robot; an adaptive variant allows swarm members
to dynamically learn the optimal size of their respective
territories based on the arena size and the total number
of robots. Some studies utilized artificial physics methods
based on the concept of virtual potential fields and virtual
forces to regulate the mutual distance between robots where
the objective is to disperse the swarm. Howard et al. [21]
proposed a control law for the velocity of robots based
on a potential field determined by the presence of other
robots and obstacles. Nearby entities and moves repel each
robot near other robots or obstacles according to the virtual
force determined by this repulsion. This mechanism leads
the swarm to optimize the occupation of the arena according
to the total number of robots. Podury and Sukhatme [23]
used potential fields to maximize the area covered by a

swarm of robots with defined sensing and communication
ranges, with the constraint that each robot must stay within
the communication range of a minimum number of other
robots. In [24], maximizing the area covered by a swarm
of connected robots is tackled with an automatic design
method using probabilistic finite state machines, where the
parameters of robot controllers are selected with an optimiza-
tion algorithm. In many deployment tasks, and especially in
those using potential field approaches, it is assumed that a
robot can measure the distance and relative orientation of
nearby robots with reasonable precision. When using real
robots, infrared technology usually offers this capability:
line-of-sight communication with highly directive signal ra-
diation patterns with known attenuation characteristics. In
[25], the swarm deployment task is performed by robots
using radio frequency communication, characterized by a
much less predictable mapping between signal strength and
distance; relative orientation cannot generally be inferred
from the received signal. Despite these difficulties, the al-
gorithm proposed successfully disperses a robot swarm in
the environment.

D. Pattern Formation Algorithm

Pattern formation is a variant of the deployment task where
robots occupy relative positions such that when viewed glob-
ally, their ensemble can be described by a specific pattern.
For example, such formations can be used in surveillance
tasks where each robot is assigned a specific area to be
monitored, and the swarm must prevent situations with
uncovered spots. The capability of a robot to measure the
relative distance and orientation of its neighbors allows a
high degree of flexibility in determining the desired positions
of neighbors, from which multi-robot formations can emerge.
Thus, by using local rules, if each robot in a swarm positions
itself to obtain a desired distance and orientation with respect
to neighboring robots (i.e., forming a geometric shape with
its neighbors), at a global level, the swarm can converge to
a state where it is deployed optimally in the environment.
In [22], an extensive analysis is performed on the dynamics
of the formation of different patterns with robots controlled
by virtual forces. The authors described how two and three-
dimensional hexagonal lattices of self-controlled particles
can be obtained using attraction and repulsion forces. In
addition, particles are subjected to a vicious friction force
proportional to the particle speed and whose purpose is to
avoid continuous oscillations around an equilibrium state.
In [26], each robot chooses two other robots among its
neighbors and then positions itself to form a triangular
shape with those neighbors. The distance between the robot
and its neighbors is chosen based on a measured local
characteristic of the environment. If all robots operate with
the same algorithm, and if the environment characteristic
that determines the distance has the same value in the entire
covered area, this technique leads the formed triangles to
be equilateral, and thus, a regular mesh pattern is observed
at the swarm level. Another analogous technique is used in
a three-dimensional space, where each robot selects three



Fig. 2: (a) Potential field generated by a simple environment; the contours show the lines of equal potential. (b) This potential
generates force fields; the arrows indicate the force’s direction (but not magnitude).

Fig. 3: Six circles can be drawn on the perimeter of a central
circle, forming a hexagon at the intersection of the circles.

Fig. 4: Initially, the particles are assumed to be in a tight
cluster t = 0 (left). Then particles repel, and after 1,000 time
steps form a good hexagonal lattice (right).

neighbors and tries to form a tetrahedron.

III. IV. TASK ALLOCATION

Task allocation mainly studies how to use the swarm
of robots to complete a series of tasks. It is challenging
for swarm robots to allocate tasks efficiently through self-
organization in an unknown dynamic environment, and such
conditions require adaptive task allocation for optimal work-
ing performance. Various algorithms have been formulated
based on intelligent systems in nature, such as ant colonies,
fish swarms, bird flocks, bacterial foraging, etc.

A. Ant Colony Optimization (ACO)

The success of many insect colonies in their methods of
labor division suggests that they are an excellent inspiration
for solving complex coordination problems in multi-agent

systems. Ants can determine the most efficient path between
their nest and food sources and alert other ants. Based on
ants’ behavior, the ACO algorithm consists of two phases -
the development of the shortest path between food and the
nest and a pheromone update. These two phases are repeated
over and over until the shortest path is found. Various adapted
ACO algorithms are analyzed below. [27]

1) Ant Task Allocation (ATA) Algorithm: This algorithm
is proposed based on a honeybee’s task selection model.
Each agent selects its current task randomly according to the
probability defined by the following: When an agent finishes
its current task, the threshold is updated according to the
agent’s working performance. This algorithm differs from
ACO, as ants in ACO share a common pheromone field
because they need to build a common optimal solution to
the problem. In contrast, each individual ant in ATA keeps
a private record of its response thresholds for different task
categories to achieve specialization. [28]

B. Bacterial Foraging Optimization (BFO)

The social foraging behavior of Escherichia coli inspires
this algorithm. Bacteria search for nutrients to maximize
energy obtained per unit of time, and individual bacteria
communicate with others by sending out signals. Chemotaxis
is the process in which a bacterium moves by taking small
steps while searching for nutrients, and the key idea of BFO
is mimicking the chemotactic movement of virtual bacteria
in the problem search space. BFO mimics the four principal
mechanisms observed in a real bacterial system: chemotaxis,
swarming, reproduction, and elimination and dispersal. [29]

C. Optimal Mass Transport (OMT)

This theory is based on economic principles of supply
and demand. The goal is to find the mapping between two
distributions so that the mapping is the least expensive for a
given metric. This theory is used to carry out the dynamic
allocation of swarm robots by taking robots as suppliers
and tasks as the demand. The mapping of robots to tasks
is obtained by solving the optimal mass transport equations.
[30]



IV. CONCLUSION

Existing swarm robotics systems are limited by displaying
simple proof-of-concept behaviors under laboratory condi-
tions. Several papers reviewed point out the drawback of
the almost universal insistence on homogeneous system
components. To be applicable to more real-world systems,
heterogeneous systems should be developed more. The field
of swarm robotics currently lacks methods and tools to
leverage the heterogeneity of naturally occurring systems
and emulate them through swarms. This paper reviewed
existing research on the important aspects of developing
a multi-swarm system and the challenges faced in such
systems. Several optimization algorithms can be applied to
multiple swarms for better performance and robustness to
failures and external disturbances. The use of multi-swarm
systems to solve multiple problems in an environment is a
resource-consuming process. The deployment and grouping
techniques after a task is finished for the redeployment of the
swarm into the same environment will increase the efficiency
of the multi-swarm system as we can make optimal use of
the resources available. The use of the different arrangements
of individual swarms depending on the characteristics of
the environment and the problem will also contribute to the
accuracy of the solution.
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